Resolution of the directed Oberwolfach problem with cycles of equal length

Alice Lacaze-Masmonteil University of Ottawa

May 12, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Acknowledgements

I would like to thank:

- My supervisor Mateja Šajna;
- 2 University of Ottawa;
- 3 NSERC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The setting: Consider a conference with 42 participants. To facilitate networking, the organizing committee decides to host 41 banquets. The banquet hall has 2 tables that each sits 21 people.

The problem: The organizing committee needs a set of 41 seating arrangements (one for each banquet) such that each participant is seated to the right of every other participants exactly once.

Is this possible?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on *n* vertices in which for every pair of distinct vertices x and y, there are arcs (x, y) and (y, x).

Figure: The complete graph K_4 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on *n* vertices in which for every pair of distinct vertices x and y, there are arcs (x, y) and (y, x) arc.

Figure: The complete symmetric digraph K_4^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cycle decomposition

Definition

A \vec{C}_m -factor of digraph G is a spanning subdigraph of G that is the disjoint union of directed m-cycles.

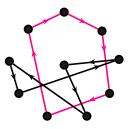


Figure: A \vec{C}_5 -factor of K_{10}^* .

(日) (四) (日) (日) (日)

Definition

A \vec{C}_m -factorization (or resolvable \vec{C}_m -decomposition) of G, denoted $R\vec{C}_m$ -D, is a decomposition of G into \vec{C}_m -factors.

Question: When does K_n^* admit an $R\vec{C}_m$ -D?

The obvious necessary condition

Necessary condition: Let α be a positive integer. If the digraph K_n^* admits an $R\vec{C}_m$ -D, then $n = \alpha m$.

Problem

To find all integers α and m for which $K^*_{\alpha m}$ admits an $R\vec{C}_m$ -D.

Observe that α =number of cycles in a \vec{C}_m -factor.

In the language of our initial problem:

m =number of participants seated at each table; α =number of tables; \vec{C}_m -factor = seating arrangement for 1 banquet.

A solution to our original problem is equivalent to a \vec{C}_{21} -factorization of $K^*_{2(21)}$.

Small cases

The digraph $K^*_{\alpha m}$ admits an $R\vec{C}_m$ -D when:

- m = 3 and $\alpha \neq 2$ (Bermond, Germa, and Sotteau, 1979)
- m = 4 and $\alpha \neq 1$ (Bennett and Zhan, 1990; Adams and Bryant, Unpublished)

• m = 5 and $\alpha \ge 103$ (Abel, Bennett, and Ge, 2002)

Current results

Theorem (Burgess and Šajna, 2014)

If m is even or α is odd, then $K^*_{\alpha m}$ admits an $R\vec{C}_m$ -D.

We have a solution when tables are of even length or when we have an odd number of tables.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Current results

What if we have an even number of tables of odd length?

Theorem (Burgess and Šajna, 2014)

Suppose that α is an even integer and m is an odd integer. If K_{2m}^* admits an $R\vec{C}_m$ -D, then $K_{\alpha m}^*$ also admits an $R\vec{C}_m$ -D.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

It suffices to solve this problem when we have seating arrangements with two tables of odd length.

Conjecture (Burgess and Šajna, 2014)

If m is odd and $m \ge 5$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Current results

Theorem (Burgess, Francetić, and Šajna, 2018)

If m is odd and $5 \leq m \leq 49$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Theorem (Lacaze-Masmonteil and Šajna, unpublished)

If m is divisible by $p \equiv 5 \pmod{6}$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Result

Theorem (Lacaze-Masmonteil, 2023+)

The digraph K_{2m}^* admits an $R\vec{C}_m$ -D for all odd $m \ge 11$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Strategy

Lemma (Burgess and Šajna, 2014)

Let $\{G_1, G_2, \ldots, G_t\}$ be a decomposition of K_n^* into spanning subdigraphs. If each G_i admits a $R\vec{C}_m$ -D, then K_n^* admits an $R\vec{C}_m$ -D.

Step 1: Decompose K_{2m}^* into $\frac{m-1}{2}$ spanning subdigraphs that fall into one of three isomorphisms classes: G_1, G_2 and G_3 .

Step 2: Show that G_1 , G_2 , and G_3 admit an $R\vec{C}_m$ -D.

Decomposition of K_{2m}^*

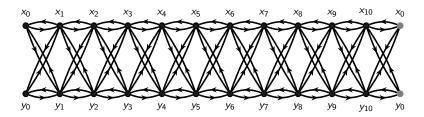


Figure: The digraph $G_1 = \vec{X}(\{\pm 1\}, 11) \wr \overline{K}_2$ that spans K_{22}^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

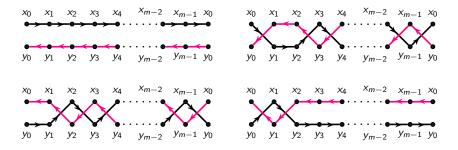


Figure: An $R\vec{C}_m$ -D of G_1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Decomposition of K_{2m}^*

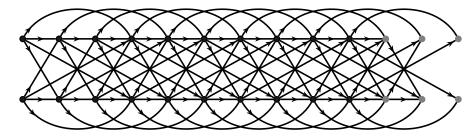
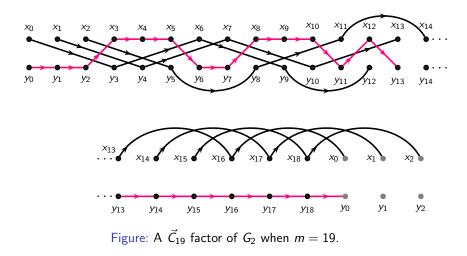


Figure: The spanning digraph $G_2 = \vec{X}(\{1,3\},11) \wr \overline{K}_2$ of $K^*_{2(11)}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Decomposition of K_{2m}^*

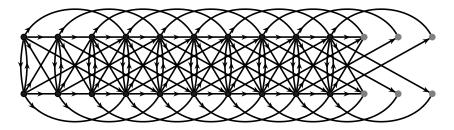


Figure: The spanning digraph $G_3 = \vec{X}(\{1,3\},11) \wr K_2^*$ of $K_{2(11)}^*$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

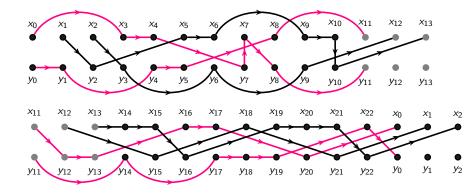


Figure: A \vec{C}_{23} -factor of G_3 for m = 13.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem

The digraph $K^*_{\alpha m}$ admits an $R\vec{C}_m$ -D if and only if $(\alpha, m) \notin \{(1, 6), (2, 3), (1, 4)\}.$

The theorem above is a result of the work of: Bermond, Germa, and Sotteau (1979); Bennett and Zhan (1990); Adams and Bryant (Unpublished); Abel, Bennett, and Ge (2002); Burgess and Šajna (2014); Burgess, Francetić, and Šajna (2018); Lacaze-Masmonteil and Šajna (Unpublished); Lacaze-Masmonteil (2023+).